Toxicity of Plant Secondary Metabolites Modulating Detoxification Genes Expression for Natural Red Palm Weevil Pesticide Development.
نویسندگان
چکیده
This study aimed to explore the larvicidal and growth-inhibiting activities, and underlying detoxification mechanism of red palm weevil against phenylpropanoids, an important class of plant secondary metabolites. Toxicity of α-asarone, eugenol, isoeugenol, methyl eugenol, methyl isoeugenol, coumarin, coumarin 6, coniferyl aldehyde, diniconazole, ethyl cinnamate, and rosmarinic acid was evaluated by incorporation into the artificial diet. All of the phenylpropanoids exhibited dose- and time-dependent insecticidal activity. Among all the tested phenylpropanoids, coumarin exhibited the highest toxicity by revealing the least LD50 value (0.672 g/L). In addition, the most toxic compound (coumarin) observed in the current study, deteriorated the growth resulting tremendous reduction (78.39%) in efficacy of conversion of digested food (ECD), and (ECI) efficacy of conversion of ingested food (70.04%) of tenth-instar red palm weevil larvae. The energy-deficient red palm weevil larvae through their intrinsic abilities showed enhanced response to their digestibility resulting 27.78% increase in approximate digestibility (AD) compared to control larvae. The detoxification response of Rhynchophorus ferrugineus larvae determined by the quantitative expression of cytochrome P450, esterases, and glutathione S-transferase revealed enhanced expression among moderately toxic and ineffective compounds. These genes especially cytochrome P450 and GST detoxify the target compounds by enhancing their solubility that leads rapid excretion and degradation resulting low toxicity towards red palm weevil larvae. On the other hand, the most toxic (coumarin) silenced the genes involved in the red palm weevil detoxification mechanism. Based on the toxicity, growth retarding, and masking detoxification activities, coumarin could be a useful future natural red palm weevil-controlling agent.
منابع مشابه
In silico identification of miRNAs and their target genes and analysis of gene co-expression network in saffron (Crocus sativus L.) stigma
As an aromatic and colorful plant of substantive taste, saffron (Crocus sativus L.) owes such properties of matter to growing class of the secondary metabolites derived from the carotenoids, apocarotenoids. Regarding the critical role of microRNAs in secondary metabolic synthesis and the limited number of identified miRNAs in C. sativus, on the other hand, one may see the point how the characte...
متن کاملSilencing the Olfactory Co-Receptor RferOrco Reduces the Response to Pheromones in the Red Palm Weevil, Rhynchophorus ferrugineus
The red palm weevil (RPW, Rhynchophorus ferrugineus), one of the most widespread of all invasive insect pest species, is a major cause of severe damage to economically important palm trees. RPW exhibits behaviors very similar to those of its sympatric species, the Asian palm weevil (R. vulneratus), which is restricted geographically to the southern part of Southeast Asia. Although efficient and...
متن کاملIdentification, Sequencing and Stability Evaluation of Eight Reference Genes in Saffron (Crocus sativus L.)
Saffron (Crocus sativus L.) is the most valuable and expensive spice in the world. The stigmas of saffron are the source of valuable apocarotenoids such as crocin, picrocrocin and safranal. transcriptomic and expression studies of genes are important steps in investigating of secondary metabolites in plants. One of the important prerequisites for such studies is the existence of reliable and st...
متن کاملEnhanced Expression of Genes Involved in the Biosynthesis Pathway of Tanshinones in Tetraploid Plants of Salvia Officinalis L.
Extended Abstract Introduction and Objective: Polyploidy is one of the main factors in plant adaptation that can increase secondary metabolites production in plants. Salvia officinalis L. is a perennial plant from the Lamiaceae family with a long history of use in the medicinal industry. Tanshinones are crucial active compounds biosynthesized in Salvia. This study was aimed to analyze the expr...
متن کاملIdentification and Expression of Genes Involved in the Biosynthesis of Penicillin and Its Detection by HPLC in Penicillium chrysogenum
In this study, after identification of genes involved in biosynthesis of penicillin, we evaluated the expression of pcbAB and pcbC genes in P. Chrysogenum. A quantitative PCR (qPCR) approach was used to determine how these genes were expressed in different time courses. In addition, the produced penicillin content was measured using HPLC. qPCR analysis of mRNAs extracted from P. chrysogenum i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 22 1 شماره
صفحات -
تاریخ انتشار 2017